Observed Relationships between Arctic Longwave Cloud Forcing and Cloud Parameters Using a Neural Network
نویسندگان
چکیده
A neural network technique is used to quantify relationships involved in cloud–radiation feedbacks based on observations from the Surface Heat Budget of the Arctic (SHEBA) project. Sensitivities of longwave cloud forcing (CFL) to cloud parameters indicate that a bimodal distribution pattern dominates the histogram of each sensitivity. Although the mean states of the relationships agree well with those derived in a previous study, they do not often exist in reality. The sensitivity of CFL to cloud cover increases as the cloudiness increases with a range of 0.1–0.9 W m 2 % . There is a saturation effect of liquid water path (LWP) on CFL. The highest sensitivity of CFL to LWP corresponds to clouds with low LWP, and sensitivity decreases as LWP increases. The sensitivity of CFL to cloud-base height (CBH) depends on whether the clouds are below or above an inversion layer. The relationship is negative for clouds higher than 0.8 km at the SHEBA site. The strongest positive relationship corresponds to clouds with low CBH. The dominant mode of the sensitivity of CFL to cloud-base temperature (CBT) is near zero and corresponds to warm clouds with base temperatures higher than 9°C. The low and high sensitivity regimes correspond to the summer and winter seasons, respectively, especially for LWP and CBT. Overall, the neural network technique is able to separate two distinct regimes of clouds that correspond to different sensitivities; that is, it captures the nonlinear behavior in the relationships. This study demonstrates a new method for evaluating nonlinear relationships between climate variables. It could also be used as an effective tool for evaluating feedback processes in climate models.
منابع مشابه
A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملSINGLE-COLUMN MODEL SIMULATIONS OF ARCTIC CLOUDINESS AND SURFACE RADIATIVE FLUXES DURING THE SURFACE HEAT BUDGET OF ARCTIC (SHEBA) EXPERIMENT By
We evaluate the ability of a typical cloud parameterization from a global model (CCM3 from NCAR) to simulate the Arctic cloudiness and longwave radiative fluxes during wintertime. Simulations are conducted with a Single-Column Model (SCM) forced with observations and reanalysis data from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. Typically, the SCM overestimates the Arctic ...
متن کاملObserved and modeled relationships among Arctic climate variables
[1] The complex interactions among climate variables in the Arctic have important implications for potential climate change, both globally and locally. Because the Arctic is a data-sparse region and because global climate models (GCMs) often represent Arctic climate variables poorly, significant uncertainties remain in our understanding of these processes. In addition to the traditional approac...
متن کاملAcceleration by aerosol of a radiative-thermodynamic cloud feedback influencing Arctic surface warming
[1] Recent work suggests that short-lived pollutants with mid-latitude origins are contributing to observed warming of the Arctic surface. Candidate mechanisms include an ‘‘aerosol indirect effect’’ associated with increases in cloud longwave emissivity: small cloud droplets associated with polluted conditions are efficient absorbers and emitters of longwave radiation. Here, we argue that the a...
متن کاملSurface Cloud Forcing in the East Pacific Stratus Deck/Cold Tongue/ITCZ Complex*
Data from the Eastern Pacific Investigation of Climate Studies (EPIC) mooring array are used to evaluate the annual cycle of surface cloud forcing in the far eastern Pacific stratus cloud deck/cold tongue/ intertropical convergence zone complex. Data include downwelling surface solar and longwave radiation from 10 EPIC-enhanced Tropical Atmosphere Ocean (TAO) moorings from 8°S, 95°W to 12°N, 95...
متن کامل